Q.
The function f(x)={∣x−3∣,4x2−23x+413,ififx≥1x<1 is
1217
202
J & K CETJ & K CET 2009Continuity and Differentiability
Report Error
Solution:
Clearly, f(x) is not differentiable at x=3.
Now, x→3−limf(x)=h→0limf(3−h) =h→0lim∣3−h−3∣ x→3+limf(x)=h→0limf(3+h) =h→0lim∣3+h−3∣=0
and f(3)=∣3−3∣=0 ∴f(x) is continuous at x=3.