Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The function f(x)=(ax+b/(x-1)(x-4)) has a local maxima at (2, -1) , then
Q. The function
f
(
x
)
=
(
x
−
1
)
(
x
−
4
)
a
x
+
b
has a local maxima at
(
2
,
−
1
)
, then
1328
234
Manipal
Manipal 2010
Report Error
A
b
=
1
,
a
=
0
B
a
=
1
,
b
=
0
C
b
=
−
1
,
a
=
0
D
a
=
−
1
,
b
=
0
Solution:
Clearly,
f
(
2
)
=
−
1
⇒
−
1
=
(
2
−
1
)
(
2
−
4
)
2
a
+
b
⇒
2
a
+
b
=
2
Now,
f
′
(
x
)
=
(
x
−
1
)
2
(
x
−
4
)
2
4
a
+
5
b
+
2
b
x
−
a
x
2
f
′
(
2
)
=
0
⇒
b
=
0
⇒
a
=
1
⇒
f
′
(
x
)
=
−
(
x
−
1
)
2
(
x
−
4
)
2
(
x
−
2
)
(
x
+
2
)
Clearly, for
x
>
2
,
f
′
(
x
)
<
0
and for
x
<
2
,
f
′
x
)
>
0
.
Thus,
x
=
2
is indeed the point of local maxima for
y
=
f
(
x
)