Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The function f(x) =(9-x2)2 increases in
Q. The function
f
(
x
)
=
(
9
−
x
2
)
2
increases in
2622
225
KEAM
KEAM 2008
Application of Derivatives
Report Error
A
(
−
3
,
0
)
∪
(
3
,
∞
)
64%
B
(
−
∞
,
−
3
)
∪
(
3
,
∞
)
11%
C
(
−
∞
,
−
3
)
∪
(
0
,
3
)
12%
D
(
−
3
,
3
)
8%
E
(
3
,
∞
)
8%
Solution:
Given,
f
(
x
)
=
(
9
−
x
2
)
2
On differentiating w.r.t.
x
,
we get
f
(
x
)
=
2
(
9
−
x
2
)
(
−
2
x
)
Now, put
f
(
x
)
=
0
⇒
2
(
9
−
x
2
)
(
−
2
x
)
=
0
⇒
x
=
0
,
±
3
∴
f
(
x
)
is increasing in
(
−
3
,
0
)
∪
(
3
,
∞
)
.