Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The function f (x)=3 cos4x+10 cos3x+6 cos2x-3,(0 le x leπ) is -
Q. The function
f
(
x
)
=
3
co
s
4
x
+
10
co
s
3
x
+
6
co
s
2
x
−
3
,
(
0
≤
x
≤
π
)
is
−
7566
221
Application of Derivatives
Report Error
A
Increasing in
(
2
π
,
3
2
π
)
19%
B
Increasing in
(
0
,
2
π
)
∪
(
3
2
π
,
π
)
44%
C
Decreasing in
(
2
π
,
3
2
π
)
7%
D
All of above
30%
Solution:
f
′
(
x
)
=
−
12
co
s
3
x
s
in
x
−
30
co
s
2
x
s
in
x
−
12
cos
x
s
in
x
=
−
6
s
in
x
cos
x
(
cos
x
+
2
)
(
2
cos
x
+
1
)
f
′
(
x
)
=
0
, for
x
=
0
,
2
π
,
3
2
π
,
π
Clearly,
f
′
(
x
)
>
0
for
2
π
<
x
<
3
2
π
And
f
′
(
x
)
<
0
; for
0
<
x
<
2
π
or
3
2
π
<
x
<
π