Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The function f(x) = 2x3 - 3x2 - 12x + 4, has
Q. The function
f
(
x
)
=
2
x
3
−
3
x
2
−
12
x
+
4
, has
2178
195
Application of Derivatives
Report Error
A
two points of local maximum
9%
B
two points of local minimum
14%
C
one maxima and one minima
73%
D
no maxima or minima
5%
Solution:
f
(
x
)
=
2
x
3
−
3
x
2
−
12
x
+
4
⇒
f
′
(
x
)
=
6
x
2
−
6
x
−
12
=
6
(
x
2
−
x
−
2
)
For maxima and minima,
f
′
(
x
)
=
0
∴
6
(
x
−
2
)
(
x
+
1
)
=
0
⇒
x
=
2
,
−
1
Now,
f
′′
(
x
)
=
12
x
−
6
At
x
=
2
f
′′
(
x
)
=
24
−
6
=
18
>
0
∴
x
=
2
, local min. point
At
x
=
−
1
f
′′
(
x
)
=
12
(
−
1
)
−
6
=
−
18
<
0
∴
x
=
−
1
local max. point