Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The function f (x)=2x3-15x2 +36x +6 is strictly decreasing in the interval
Q. The function
f
(
x
)
=
2
x
3
−
15
x
2
+
36
x
+
6
is strictly decreasing in the interval
2590
222
KEAM
KEAM 2014
Application of Derivatives
Report Error
A
(2, 3)
42%
B
(
−
∞
,
2
)
17%
C
(3, 4)
5%
D
(
−
∞
,
3
)
∪
(
4
,
∞
)
13%
E
(
−
∞
,
2
)
∪
(
3
,
∞
)
13%
Solution:
Given,
f
(
x
)
=
2
x
3
−
15
x
2
+
36
x
+
6
On differentiating both sides w.r.t.
x
, we get
f
′
(
x
)
=
6
x
2
−
30
x
+
36
For strictly decreasing,
f
′
(
x
)
<
0
⇒
6
(
x
2
−
5
x
+
6
)
<
0
⇒
(
x
−
3
)
(
x
−
2
)
<
0
⇒
2
<
x
<
3
∴
x
∈
(
2
,
3
)