Q.
The function f defined by f(x)=t→∞lim{(1+sinπx)t+1(1+sinπx)t−1} is
1262
191
Continuity and Differentiability
Report Error
Solution:
f(x)=limt→∞{(1+sinπx)t+1(1+sinπx)t−1} ∵sinπx>0 (in I and II quadrants) ∴2nπ<πx<(2n+1)π ⇒2n<x<2n+1,n∈I
and sin πx<0 (in III and IV quadrrants) ∴(2n+1)<πx<(2n+2)π ⇒2n+1<x<2n+2,n∈I and sinπx=0 if x=0,1,2,……… f(x)=⎩⎨⎧t→∞lim1+(1+sinπx)t11−(1−sinπx)t1,t→∞lim(1+sinπx)t+1(1+sinπx)t+1,0,2n<x<2n+12n+1<x<2n+2x=0,1,2,….. =⎩⎨⎧1,−10,2n<x<2n+12n+1<x<2n+2x=0,1,2……….
If k∈I,f(k)=0, but x→klimf(x)=1 or −1 according as k∈(2n,2n+1) or k∈(2n+1,2n+2)