Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The function f:(0, ∞) arrow(-(π/2), (π/2)) be defined as, f( x )= arctan ( ln x ), then the value of the integral ∫ limits1 e (f( x )/ x ) dx is equal to
Q. The function
f
:
(
0
,
∞
)
→
(
−
2
π
,
2
π
)
be defined as,
f
(
x
)
=
arctan
(
ln
x
)
, then the value of the integral
1
∫
e
x
f
(
x
)
d
x
is equal to
148
85
Integrals
Report Error
A
4
π
−
ln
2
B
4
π
−
2
1
ln
2
C
4
π
+
ln
2
D
π
−
2
1
ln
2
Solution:
I
=
1
∫
e
x
t
a
n
−
1
(
l
n
x
)
d
x
=
0
∫
1
tan
−
1
(
t
)
d
t
(
where
ln
x
=
t
)
using I.B.P., we get
=
tan
−
1
(
t
)
∣
∣
0
1
−
0
∫
1
1
+
t
2
t
d
t
=
4
π
−
2
1
ln
(
1
+
t
2
)
]
0
1
=
4
π
−
2
1
ln
2