Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The foci of the hyperbola 16x2 - 9y2 - 64 x + 18 y - 90 = 0 are
Q. The foci of the hyperbola
16
x
2
−
9
y
2
−
64
x
+
18
y
−
90
=
0
are
1760
238
KEAM
KEAM 2018
Report Error
A
(
12
24
±
5
145
,
1
)
0%
B
(
12
21
±
5
145
,
1
)
0%
C
(
1
,
2
24
±
5
145
)
0%
D
(
1
,
2
21
±
5
145
)
40%
E
(
2
21
±
5
145
,
−
1
)
40%
Solution:
16
x
2
−
9
y
2
−
64
x
+
18
y
−
90
=
0
−
16
(
x
2
−
4
x
)
−
9
(
y
2
−
2
y
)
−
90
=
16
(
x
−
2
)
2
−
9
(
y
−
1
)
2
=
90
+
16
×
4
−
9
×
1
=
16
(
x
−
2
)
2
−
9
(
y
−
1
)
2
=
145
=
16
145
(
x
−
2
)
2
−
9
145
(
y
−
1
)
2
=
1
...(i)
We know that,
a
2
x
2
−
b
2
y
2
=
1
...(ii)
Foci
⇒
(
a
e
,
0
)
On comparing Eqs. (i) and (ii), we get
∵
e
=
1
+
a
2
b
2
=
1
+
9
16
=
3
5
X
=
a
e
⇒
x
−
2
=
+
16
145
×
3
5
=
±
12
5
145
x
=
2
±
12
5
145
⇒
x
=
12
24
±
5
145
Y
=
0
⇒
y
−
1
=
0
⇒
y
=
1
Hence,
(
12
24
±
5
145
,
1
)