Given equations of ellipse can be rewritten as ((5x)2+2(5)(10)x+102)+ ((2y)2−2(2)(1)y+12)−102−12+100=0 ⇒(5x+10)2+(2y−1)2=1 ⇒25(x+2)2+4(y−21)2=1 ⇒(1/5)2(x+2)2+(1/2)2(y−1/2)2=1, which is of the form a2x2+b2y2=1, where a<b
Here, a=51,b=21 and major axis of ellipse x+2=0 i.e. x=−2
Now, e =1−b2a2=1−254=2521=521 ∴ foci are (−2,21±be)=(−2,21±1021) =(−2,105±21)