Q.
The first term of an infinite G.P. is the value of x satisfying the equation log4(4x−15)+x−2=0 and the common ratio is cos(32011π). The sum of G.P. is:
We have, log4(4x−15)+x−2=0 ⇒log4(4x−15)=2−x ⇒4x−15=42−x ⇒4x−15=424−x ⇒42x−15⋅(4x)=16 ⇒42x−15⋅(4x)−16=0 ⇒42x−16⋅(4x)+(4x)−16=0 ⇒(4x−16)(4x+1)=0 ⇒4x=16 [∵(4x+1)=0,∀x∈R] ⇒x=2
Common ratio =cos(32011π)=cos(670π+3π)=21
Therefore, sum of infinite GP is 1−21x=212=4