Divide the equation by y2, we get y−2dxdy−(2tanx)y−1=−tan4x [see the Bernoulli’s equation]
Put y−1=z⇒−y−2dxdy=dxdz
Hence, −dxdz−(2tanx).z=−tan4x ⇒dxdz+(2tanx)z=tan4x
Which is linear in z, Integrating factor, I.F.=e∫2tanxdx=e2log∣secx∣=sec2x
The solution is z(sec2x)=∫(tan4x)sec2xdx+a y−1(sec2x)=21tan5x+a⇒5sec2x=y(tan5x+c),C=5a