We have (1+x)10=10C0+10C1x+10C2x2+10C3x3+……..+10C9x9+10C10x10....(1) Also (x−1)10=10C0x10−10C1x9+10C2x8+……..10C9x+10C10....(2) Multiplying (1) and (2), we get (x2−1)10=(10C0+10C1x+…….+10C9x9+10C10x10) (10C0x10+10C1x9+…….−10C9x+10C10)
Comparing the coefficients of x10 in (3), we get 10C5(−1)5=(10C0)2−(10C1)2+(10C2)2−…….−(10C9)2+(10C10)2