We know that, (a+b)5+(a−b)5=5C0a5+5C1a4b+5C2a3b2 +5C3a2b3+5C4ab4+5C5b5+5C0a5−5C1a4b +5C2a3b2−5C4ab4+5C3a2b3+5C4ab4−5C5b5 =2[a5+10a3+b2+5ab4] ∴[x+(x3−1)1/5]5+[x−(x3−1)1/2]5
=2 [x5+10x3(x3−1)+5x(x3−1)2]
Therefore, the given expression is a polynomial of degree 7.