(3x+1)1{(21+3x+1)7−(21−3x+1)7} =27(3x+1)1{(1+3x+1)7−(1−3x+1)7} ···(i)
Now, (1+3x+1)7−(1−3x+1)7 =[7C0+7C1(3x+1)+7C2(3x+1)2+...+7C7(3x+1)7] −[7C0−7C1(3x+1)+7C2(3x+1)2.....−7C7(3x+1)7] =2[7C1(3x+1)+7C3(3x+1)3+7C5(3x+1)5+7C7(3x+1)7] =23x+1×[7+35(3x+1)+21(3x+1)2+(3x+1)3]
Now, putting above value in (i), so the given expression becomes 261[42+105x+21(3x+1)2+(3x+1)3] ∴ Degree of a polynomial is the highest power of x. So, degree of given expression is 3.