Any tangent to the hyperbola a2x2−b2y2=1 is y=mx±a2m2−b2
or y=mx+c where c=±a2m2−b2
This will touch the hyperbola a2y2−b2x2=1
if the equation a2(mx+c)2−b2x2=1 has equal roots
or x2(b2m2−a2)+2b2mcx +(c2−a2)b2=0 has equal roots ⇒4b4m2c2=4(b2m2−a2)(c2−a2)b2 ⇒c2=a2−b2m2 ∴a2m2−b2=a2−b2m2 ⇒m2(a2+b2)=a2+b2 ⇒m=±1
Hence common tangents are y=±x±a2−b2