Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The equations of the tangents to the circle x2 + y2 - 6x + 4y = 12 , which are parallel to the straight line 4x + 3y + 5 = 0 , are
Q. The equations of the tangents to the circle
x
2
+
y
2
−
6
x
+
4
y
=
12
, which are parallel to the straight line
4
x
+
3
y
+
5
=
0
, are
1586
190
MHT CET
MHT CET 2010
Report Error
A
3
x
−
4
y
−
19
=
0
,
3
x
−
4
y
+
31
=
0
B
4
x
+
3
y
−
19
=
0
,
4
x
+
3
y
+
31
=
0
C
4
x
+
3
y
+
19
=
0
,
4
x
+
3
y
−
31
=
0
D
3
x
−
4
y
+
19
=
0
,
3
x
−
4
y
+
31
=
0
Solution:
Let equation of tangent be
4
x
+
3
y
+
k
=
0
centre of the circle is
(
3
,
−
2
)
.
Then,
9
+
4
+
12
=
∣
∣
16
+
9
4
(
3
)
+
3
(
−
2
)
+
k
∣
∣
⇒
6
+
k
=
±
25
⇒
k
=
19
and
−
31
Hence, the tangent are
4
x
+
3
y
+
19
=
0
and
4
x
+
3
y
−
31
=
0