Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The equations kx2+x+k=0 and kx2+kx+1=0 have exactly one root in common for
Q. The equations
k
x
2
+
x
+
k
=
0
and
k
x
2
+
k
x
+
1
=
0
have exactly one root in common for
308
176
NTA Abhyas
NTA Abhyas 2022
Report Error
A
k
=
−
2
1
,
1
B
k
=
1
C
k
=
−
2
1
D
k
=
2
1
Solution:
Let
α
be the common root
⇒
k
α
2
+
α
+
k
=
0
k
α
2
+
k
α
+
1
=
0
On solving, we get,
1
−
k
2
α
2
=
k
2
−
k
α
=
k
2
−
k
1
α
α
2
=
k
2
−
k
1
−
k
2
and
1
α
=
k
2
−
k
k
2
−
k
⇒
α
=
k
2
−
k
1
−
k
2
=
1
⇒
k
2
−
k
=
1
−
k
2
⇒
2
k
2
−
k
−
1
=
0
⇒
k
=
−
2
1
,
1
For
k
=
1
,
equations are identical, thus not possible
Hence,
k
=
−
2
1