Q.
The equations ax2+bx+a=0(a,b∈R) and x3−2x2+2x−1=0 have 2 roots common. Then a+b must be equal to
8604
172
Complex Numbers and Quadratic Equations
Report Error
Solution:
We have, x3−2x3+2x−1=0 ⇒(x−1)(x2−x+1)=0 ⇒x=1,21±3i
Since coefficients of ax2+bx+a=0 are real, ∴ The common roots must be complex and conjugate.
Now, 21+i3=−(2−1−i3)=−ω2
Substituting x=−ω2 in ax2+bx+a=0 ⇒aω4−bω2+a=0 ⇒aω−bω2+a=0 ⇒a(1+ω)−bω2=0 ⇒a(−ω2)−bω2=0 ⇒−ω2(a+b)=0 ⇒a+b=0