Q.
The equation ∣z−z1∣2+∣z−z2∣2=k,k∈R represents a circle if
1889
168
Complex Numbers and Quadratic Equations
Report Error
Solution:
We have, ∣z−z1∣2+∣z−z2∣2=k ⇒2∣z∣2+∣z1∣2+∣z2∣2−2Re(zzˉ1)−2Re(zzˉ2)=k ⇒2∣z∣2−2Re{z(zˉ1+zˉ2)}=k−(∣z1∣2+∣z2∣2) ⇒∣z∣2−Re{z(zˉ1+zˉ2)}=21(k−∣z1∣2−∣z2∣2) ⇒∣∣z−2z1+z2∣∣2−41∣z1+z2∣2=21(k−∣z1∣2−∣z2∣2) ⇒∣∣z−2z1+z2∣∣2=21k−41{∣z1∣2+∣z2∣2−2Re(z1zˉ2)} =21k−41∣z1−z2∣2 ⇒∣∣z−2z1+z2∣∣2=41(2k−∣z1−z2∣2)
which will represent a real circle having centre at 2z1+z2 and radius =212k−∣z1−z2∣2,
provided k≥21∣z1−z2∣2