2222
186
Complex Numbers and Quadratic Equations
Report Error
Solution:
z2=zˉ ⇒(x+iy)2=x−iy [if z=x+iy] ⇒x2−y2+2ixy=x−iy ⇒x2−y2=x and 2xy=−y ⇒x2−y2=x and y(2x+1)=0
Now y(2x+1)=0 gives y=0
or x=−21
when y=0, we have x2−y2−x=0 ⇒x2−x=0 ⇒x=0 or x=1
when x=−21,x2−y2−x=0 gives 41−y2+21=0 ⇒y2=43 ⇒y=±23.
Hence there are four solutions z1=0+i0=0,z2=1+i,0=1 z3=−21+23i and z4=−21−23i