Q.
The equation y2exy=9e−3⋅x2 defines y as a differentiable function of x. The value of dxdy for x=−1 and y=3 is
94
106
Continuity and Differentiability
Report Error
Solution:
Using product rule y2(exy(xdxdy+y))+exy⋅2ydxdy=9e−3⋅2x put x=−1 and y=3 9(e−3(−1dxdy+3))+e−3⋅6dxdy=−9e−3⋅2 −9(dxdy−3)+6dxdy=−18 3dxdy=45⇒dxdy=15