sin4x+cos4x+sin2x+α=0 ⇒(sin2x+cos2x)2−2sin2xcos2x+sin2x+α=0 ⇒sin22x−2sin2x−2−2α=0
Let sin2x=y.
Then the given equation becomes y2−2y−2(1+α)=0
where −1,≤y≤1,(∵−1≤sin2x≤1)
For real, discriminant ≥0⇒3+2α≥0 ⇒α≥−23​
Also −1≤y≤1 ⇒−1≤1−3+2α​≤1 ⇒3+2α≤4 ⇒α≤21​.
Thus −23​≤α≤21​