Given points are A(−2,1,3),B(1,1,1) and C(2,3,4). ∴A=−2i^+j^+3k^,B=i^+j^+k^ and C=2i^+3j^+4k^
Now, AB=(i^+j^+k^)−(−2i^+j^+k^)=3i^−2k^ BC=(2i^+3j^+4k^)−(i^+j^+k^)=i^+2j^+3k^
The normal of the plane n=AB×BC ∴AB×BC=∣∣i^31j^02k^−23∣∣ =i^(0+4)−j^(9+2)+k^(6−0) n=4i^−11j^+6k^
Now, equation of plane ⇒4(x−2)−11(y−3)+6(z−4)=0 ⇒4x−8−11y+33+6z−24=0 ⇒4x−11y+6z+1=0
As we know that, if ax+by+cz+d=0
is the equation of plane, then the normal form is (a2+b2+c2a)x+(a2+b2+c2b)y +(a2+b2+c2c)z+(a2+b2+c2d)=0 ∴ Required normal form is (42+112+624)x+(42+112+62−11)y +(42+112+626)z+(42+112+621)=0 ⇒16+12l+364x−16+12l+3611y +16+121+366z+16+121+361=0 ⇒1734x−17311y+1736z+1731=0 ⇒1734x−17311y+1736z=−1731 ⇒−1734x+17311y−1736z=1731 ⇒(−1734)x+(17311)y+(173−6)z=1731