Let S=x2+y2−2x−6y+6=0
and P(x1,y1)=(0,1) S1=x12+y12−2x1−6y1+6=0 =(0)2+(1)2−2(0)−6(1)+6 =1−6+6=1 T=x⋅x1+y⋅y1−(x+x1)−3(y+y1)+6 =x⋅(0)+y(1)−(x+0)−3(y+1)+6 =0+y−x−3y−3+6 =−x−2y+3 ⇒T2=(−x−2y+3)2 =(−x−2y)2+9+6(−x−2y) =x2+4y2+4xy+9−6x−12y ∴ Equation of the pair of tangents S⋅S1=T2 (x2+y2−2x−6y+6)(1) =x2+4y2+4xy−6x−12y+9 ⇒3y2+4xy−4x−6y+3=0