The equation of the curve is, y4=ax3
Differentiate w.r.t x, we get, 4y3dxdy=3ax2 ∴dxdy=4y33ax2 ∴dx(a,a)dy=4(a)33a(a)2 ∴dx(a,a)dy=4(a)33(a)3 ∴dx(a,a)dy=43
Thus, slope of tangent is 43
Let m1= slope of normal
As tangent and normal are perpendicular to each other, we can write, 43×m1=−1 ∴m1=3−4
Thus, equation of normal passing through (a,a) is, y−y1=m1(x−x1) ∴y−a=3−4(x−a) ∴3(y−a)=−4(x−a) ∴3y−3a=−4x+4a ∴4x+3y=7a