Q.
The equation of the line passing through the point (1,2,−4) and perpendicular to the two lines 3x−8=−16y+19=7z−10 and 3x−15=8y−29=−5z−5 will be
Given lines are 3x−8=−16y+19=7z−10 ...(i) and 3x−15=8y−29=−5z−5...(ii)
Both lines are in the form ax−x1=by−y1=cz−z1 ∴a1=3b1=−16c1=7 a2=3,b2=8,c2=−5 Now, b1=a1j^+b1j^+c1k^=3i^−16j^+7k^ and b2=a2i^+b2j^+c2k^=3i^+8j^−5k^
The vector perpendicular to both Eqs. (i) and (ii) is given by b=b1×b2 =∣∣i^33j^−168k^7−5∣∣ −i^(80−56)−j^(−15−21)+k^(24+48) b1×b2=24i^+36j^+72k^
Hence, the required equation of line is 24x−1=36y−2=72z+4 i.e., 2x−1=3y−2=6z+4