Given, Focus S=(6,2)
Centre C=(1,2)=(h,k)
Point P=(4,6)
Required Equation of ellipse is a2(x−1)2+b2(y−2)2=1… (i)
Since, Eq. (i) passes through P(4,6) a2(4−1)2+b2(6−2)2=1 a29+b216=1…. (ii)
Since, Focus =(6,2) (h+ae,k)=(6,2) ∴h+ae=6 k=2 1+ae=6 ae=5 a2e2=25 b2=a2(1−e2) b2=a2−a2e2 b2=a2−25 a2=b2+25… (iii)
Put a2 value in Eq. (ii), b2+259+b216=1 9b2+16(b2+25)=b2(b2+25) 9b2+16b2+400=b4+25b2 b4=400 b2=20
From Eq. (iii), a2=20+25 a2=45
Put a2,b2 Value in Eq. (i), 45(x−1)2+20(y−2)2=1 [∴ Answer written in the paper was wrong in RHS it should be 1]