We have the hyperbolas a2x2−b2y2=1 ...(i)
and a2y2−b2x2=1 ...(ii)
Any tangent to the hyperbola Eq. (i), y=mx+c
Where c=±a2m2−b2 ...(iii)
But this tangent touches the parabola Eq. (ii), also ∴a2(mx+c)2−b2x2=1 ⇒b2(m2x2+c2+2mcx)−a2x2=a2b2 ⇒(b2m2−a2)x2+2mcxb2+b2c2−a2b2=0 ⇒(b2m2−a2)x2+2mcb2x+b2(c2−a2)=0
For the tangency, it should have equal roots (2mcb2)2=4(b2m2−a2)⋅b2(c2−a2) ⇒4m2c2b4=4b2(b2m2c2−b2m2a2−a2c2+a4) ⇒m2c2b2=b2m2c2−b2m2a2−a2c2+a4 ⇒a2c2=a4−b2m2a2 ⇒c2=a2−b2m2 ⇒a2m2−b2=a2−b2m2 [using Eq. ⇒(a2+b2)m2=a2+b2 ⇒m2=1 ⇒m=±1
Hence, the equation of common tangent are y=±x±a2−b2