Equation of tangent in slope form of parabola y2=83x is y=mx+c...(i)
where,c=ma ∴c=m23...(ii)
Also, tangent to the hyperbola 4x2−y2=4
or 1x2−4y2=1 is c2=a2m2−b2 c2=1m2−4 ⇒(m23)2=m2−4 [from Eq. (ii)] ⇒m212=m2−4 ⇒m4−4m2−12=0 ⇒m4−6m2+2m2−12=0 ⇒m2(m2−6)+2(m2−6)=0 ⇒(m2+2)(m2−6)=0 ⇒m2−6=0 and m2+2=0 ⇒m2=6 ⇒m=±6
i.e., m=6 as m is positive slope. ∴ From Eq. (i), y=6x+623 ⇒y=6x+2