Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The equation of the common tangent touching the circle (x-3)2 +y2=9 and parabola y = 4x above the x-axis is
Q. The equation of the common tangent touching the circle
(
x
−
3
)
2
+
y
2
=
9
and parabola
y
=
4
x
above the
x
-axis is
1815
258
WBJEE
WBJEE 2007
Report Error
A
3
y
=
3
x
+
1
B
3
y
=
−
(
x
+
3
)
C
3
y
=
x
+
3
D
3
y
=
−
(
3
x
+
1
)
Solution:
Any tangent to
y
2
=
4
x
is
y
=
m
x
+
m
1
.
It touches the circle, if
3
=
1
+
m
2
∣
3
m
+
m
1
∣
⇒
9
(
1
+
m
2
)
=
(
3
m
+
m
1
)
2
⇒
9
(
1
+
m
2
)
m
2
=
(
3
m
2
+
1
)
2
⇒
9
m
2
+
9
m
4
=
9
m
4
+
1
+
6
m
2
⇒
3
m
2
=
1
⇒
m
=
±
3
1
For the common tangent to the above
x
-axis we take
m
=
3
1
∴
Equation of common tangent is
y
=
3
x
+
3
⇒
3
y
=
x
+
3