Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The equation of the common tangent of the two touching circles y2 + x2 - 6x - 12y + 37 = 0 and x2 +y2 - 6y + 7 = 0 is
Q. The equation of the common tangent of the two touching circles
y
2
+
x
2
−
6
x
−
12
y
+
37
=
0
and
x
2
+
y
2
−
6
y
+
7
=
0
is
1617
218
KCET
KCET 2006
Conic Sections
Report Error
A
x + y + 5 = 0
15%
B
x + y - 5 = 0
41%
C
x - y + 5 = 0
18%
D
x - y - 5 = 0
26%
Solution:
Let
S
1
≡
x
2
+
y
2
−
6
x
−
12
y
+
37
=
0
and
S
2
≡
x
2
+
y
2
−
6
y
+
7
=
0
The equation of common tangent of the two circles is
S
1
−
S
2
=
0
⇒
x
2
+
y
2
−
6
x
−
12
y
+
37
−
(
x
2
+
y
2
−
6
y
+
7
)
=
0
⇒
−
6
x
+
6
y
+
30
=
0
⇒
x
−
y
−
5
=
0