Let l1:y+3x=6 l2:y−3x=6 l3:y=0
Solving the equations of lines l1,l2,l3 pairwise, we get A=(0,6),B=(−23,0)
and C=(23,0) ⇒∣AB∣=∣BC∣=∣CA∣=43 ⇒Δ is an equilateral triangle. ⇒ The centroid and the circumcentre are same. ⇒ Circumcentre =(30+23−23,36+0+0) =(0,2)
Circumradius =32(243)=4
Equation of circumcircle is x2+(y−2)2=16 ⇔x2+y2−4y−12=0 ⇒a=0,b=−4,c=−12 ⇒∣∣cab∣∣=0