Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The equation of one of the tangents to the curve y = cos ( x + y ),-2 π ≤ x ≤ 2 π that is parallel to the line x +2 y =0, is
Q. The equation of one of the tangents to the curve
y
=
cos
(
x
+
y
)
,
−
2
π
≤
x
≤
2
π
that is parallel to the line
x
+
2
y
=
0
, is
2209
237
Application of Derivatives
Report Error
A
x
+
2
y
=
1
B
x
+
2
y
=
π
/2
C
x
+
2
y
=
π
/4
D
None of these
Solution:
y
=
cos
(
x
+
y
)
…
(i)
∴
d
x
d
y
=
−
sin
(
x
+
y
)
{
1
+
d
x
d
y
}
∴
d
x
d
y
=
−
1
+
s
i
n
(
x
+
y
)
s
i
n
(
x
+
y
)
=
−
2
1
⇒
sin
(
x
+
y
)
=
1
, so
cos
(
x
+
y
)
=
0
∴
from (i),
y
=
0
and
(
x
+
y
)
=
2
nπ
+
2
π
Tangent at
(
2
π
,
0
)
is
x
+
2
y
=
2
π