Any tangent to parabola y2=8x is y=mx+m2…(i)
It touches the circle x2+y2−12x+4=0,
if the length of perpendicular from the centre (6,0) is equal to radius 32. ∴m2+16m+m2=±32 ⇒(3m+m1)2=8(m2+1) ⇒(3m2+1)2=8(m4+m2) ⇒m4−2m2+1=0 ⇒m=±1
Hence, the required tangents are y=x+2 and y=−x−2.