Given curve is y=(1+x)y+sin−1(sin2x)
On differentiating w.r.t x, we get dxdy=(1+x)y[1+xy+log(1+x)dxdy] +1−sin4x2sinxcosx ⇒(dxdy)at(0,1)=1 [∵atx=0,y=1]
Slope of normal at (x=0)=−1 ∴ Equation of normal at x=0 and y=1 is y−1=−1(x−0) ⇒y−1=−x ⇒x+y=1