Let equation of hyperbola be a2x2−b2y2=1...(i)
Given, foci, (±8,0)=(±ae,0) ⇒ae=8...(ii)
and length of latusrectum =a2b2 ∴24=a2b2 ⇒b2=12a...(iii) ∴ From Eq. (ii), a2e2=64 ⇒a2(a2a2+b2)=64 ⇒a2+b2=64 ⇒a2+12a=64 ⇒a2+12a−64=0 ⇒a2+16a−4a−64=0 ⇒a(a+16)−4(a+16)=0 ⇒(a+16)(a−4)=0 ⇒a=4 [∵ a cannot be negative]
On putting a=4 in Eq. (iii), we get b2=12×4 ⇒b2=48 ∴ From Eq. (i), 16x2−48y2=1 ⇒3x2−y2=48