Given, y2=8x ∴4a=8⇒a=2
Any tangent of parabola is, y=mx+ma ⇒mx−y+m2=0
If it is a tangent to the circle x2+y2=2, then perpendicular from centre (0,0) is equal to radius 2 ∴m2+1m2=2 ⇒m24=2(m2+1) ⇒m4+m2−2=0 ⇒(m2+2)(m2−1)=0 ⇒m=±1
Hence, the common tangents are y=±(x+2)