Let the triangle be ABC with C≡(3,3) and the altitude drawn through the vertex (meeting BC at D ) be 3x+y−23=0.
If B is (xb,yb), then we have 3xb−3=1yb−3=42(33+3−23)=−3
or xb=0,yb=0
and the coordinates of D are (3/2,3/2).
Let the coordinates of vertex A be (xa,ya). Then, −1/2xa−(3/2)=3/2ya−(3/2)=±3
or (xa,ya)≡(0,23) or (3,−3)
Hence, the remaining vertices are (0,0) and (0,23)
or (0,0) and (3,−3).
Also, the orthocenter is (1,3)
or (2,0).