Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The equation of a circle concentric with the circle x2+y2-6 x+12 y+15=0 and having area that is twice the area of the given circle is
Q. The equation of a circle concentric with the circle
x
2
+
y
2
−
6
x
+
12
y
+
15
=
0
and having area that is twice the area of the given circle is
1386
207
TS EAMCET 2019
Report Error
A
x
2
+
y
2
−
6
x
+
12
y
−
15
=
0
B
x
2
+
y
2
−
6
x
+
12
y
−
30
=
0
C
x
2
+
y
2
−
6
x
+
12
y
−
60
=
0
D
x
2
+
y
2
−
6
x
+
12
y
+
15
=
0
Solution:
Given,
x
2
+
y
2
−
6
x
+
12
y
+
15
=
0
Centre
(
3
,
−
6
)
r
=
9
+
36
−
15
=
30
Area
=
π
(
30
)
2
=
30
π
Required equation of circle has twice the area of circle
∴
A
′
=
60
π
π
R
2
=
60
π
,
R
2
=
60
∴
Equation of circle concentric with given circle is
(
x
−
3
)
2
+
(
y
+
6
)
2
=
60
x
2
+
y
2
−
6
x
+
12
y
−
15
=
0