We have the equation ∣∣x−ax−bx−cx−bx−cx−ax−cx−ax−b∣∣=0 Applying the operation C1→C1+C2+C3, we get ∣∣3x−(a+b+c)3x−(a+b+c)3x−(a+b+c)x−bx−cx−ax−cx−ax−b∣∣=0⇒[3x−(a+b+c)]∣∣111x−bx−cx−ax−cx−ax−b∣∣=0 Applying R2→R2−R1 and R3→R3−R1 we get [3x−(a+b+c)]∣∣100x−bb−cb−ax−cc−ax−b∣∣=0⇒{3x−(a+b+c)}{(b−c)(c−b)−(b−a)(c−a)}=0⇒{3x−(a+b+c)}{−b2−c2+2bc−bc−bc−ca)}=0⇒{3x−(a+b+c)}{−(a2+b2+c2−ab−bc−ca)}=0⇒{3x−(a+b+c)}(2a2+2b2+2c2−2ab−2bc−2ca)=0⇒{3x−(a+b+c)}{(a−b)2+(b−c)2+(c−a)2}=0⇒3x−(a+b+c)=0[∴(a−b)2+(b−c)2+(c−a)2=0 as a, b, c are different] ⇒3x=a+b+cx=31(a+b+c)