Given curve is 25x2+9y2−150x−90y+225=0 ⇒(25x2−150x)+(9y2−90y)+225=0 ⇒25(x2−6x)+9(y2−10y)+225=0 ⇒25{x2−6x+9−9}+9{y2−10y+25−25} +225=0 ⇒25(x−3)2−225+9(y−5)2−225+225=0 ⇒25(x−3)2+9(y−5)2=225 ⇒9(x−3)2+25(y−5)2=1 [∵(b>a) ]
Which represent an ellipse Whose eccentricity e=b2b2−a2=2525−9=2516=54