We have, 4x2+16y2−24x−32y=1 ⇒4x2−24x+16y2−32y=1 ⇒4(x2−6x)+16(y2−2y)=1 ⇒4(x2−6x+9)+16(y2−2y+1)−36−16=1 ⇒4(x−3)2+16(y−1)2=53 ⇒453(x−3)2+1653(y−1)2=1
On compairing with a2x2+b2y2=1, we get a2=453 and b2=1653 ∴ Eccentricity of ellipse is e=a2a2−b2 ⇒e=453453−1653 ⇒e=23