Let eccentricity of both the parabolas be e.
Then in the given ellipse: α2x2+β2y2=1
We have a2=α2,b2=β2 b2=a2(1−e2) ⇒β2=α2(1−e2)(∵α>β) ⇒α2β2=1−e2 ⇒e2=1−α2β2...(i)
From equation 9x2+16y2=1 a2=9,b2=16 Then b2=a2(1−e2),b>a 916=1−e2 e2=1−916...(ii)
From equations (i) and (ii) we get: 1−916=1−α2β2 ⇒916=α2β2 ⇒αβ=±34 ⇒4α=3β
or 4α=−3β; 4α=3β is in the option.