Let eq. of ellipse be a2x2+b2y2=1
If the latus rectum is PQ then for the points P and Q x=ae,b2y2=1−e2 ⇒y2=b2(1−e2) ⇒y=±b1−e2
Hence, P is (ae,b1−e2) and Q is (ae,−b1−e2)
If eccentricangle of theextremitiesbe θ,
then, acosθ=ae and bsinθ=±b1−e2 ⇒tanθ=±e1−e2=±(aeb) ⇒θ=tan−1(±aeb)