f(x)=sin(x2+1∣x∣+5)
For domain : −1≤x2+1∣x∣+5≤1
Since ∣x∣+5&x2+1 is always positive
So x2+1∣x∣+5≥0∀x∈R
So for domain: x2+1∣x∣+5≤1 ⇒∣x∣+5≤x2+1 ⇒0≤x2−∣x∣−4 ⇒0≤(∣x∣−21+17)(∣x∣−21−17) ⇒∣x∣≥21+17 or ∣x∣≤21−17 (Rejected) ⇒x∈(−∞,−21+17]∪[21+17,∞)
So, a=21+17