Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The domain of the function f(x)= textSec-1(3 x-4)+ textTan h-1((x+3/5)) is
Q. The domain of the function
f
(
x
)
=
Sec
−
1
(
3
x
−
4
)
+
Tan
h
−
1
(
5
x
+
3
)
is
1955
179
TS EAMCET 2020
Report Error
A
(
−
8
,
1
)
∪
(
3
5
,
2
)
B
(
1
,
3
5
)
C
[
−
8
,
1
]
∪
[
3
5
,
2
]
D
(
−
8
,
1
]
∪
[
3
5
,
2
)
Solution:
We have,
f
(
x
)
=
sec
−
1
(
3
x
−
4
)
+
tanh
−
1
(
5
x
+
3
)
=
sec
−
1
(
3
x
−
4
)
+
2
1
ln
(
1
−
5
x
+
3
1
+
5
x
+
3
)
=
sec
−
1
(
3
x
−
4
)
+
2
1
ln
(
2
−
x
8
+
x
)
Now, for
sec
−
1
(
3
x
−
4
)
3
x
−
4
≤
−
1
∪
3
x
−
4
≥
1
⇒
3
x
≤
3
∪
3
x
≥
5
⇒
x
≤
1
∪
x
≥
3
5
∴
x
∈
(
−
∞
,
1
]
∪
x
∈
[
3
5
,
∞
)
Again, for
ln
(
2
−
x
8
+
x
)
2
−
x
8
+
x
>
0
x
∈
(
−
8
,
2
)
∴
Domain of
f
(
x
)
=
(
−
8
,
1
]
∪
[
3
5
,
2
)