Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The domain of the function f(x)=log4(log5 (log3(18x-x2-77))) ldots is
Q. The domain of the function
f
(
x
)
=
l
o
g
4
(
l
o
g
5
(
l
o
g
3
(
18
x
−
x
2
−
77
)
)
)
…
is
3276
209
Relations and Functions
Report Error
A
x
∈
(
4
,
5
)
5%
B
x
∈
(
0
,
10
)
20%
C
x
∈
(
8
,
10
)
56%
D
x
∈
(
8
,
10
]
19%
Solution:
Since
l
o
g
x
is defined
∀
x
>
0
f
(
x
)
=
l
o
g
4
(
l
o
g
5
(
l
o
g
3
(
18
x
−
x
2
−
77
)
)
)
⇒
l
o
g
5
(
l
o
g
3
(
18
x
−
x
2
−
77
)
)
>
0
⇒
l
o
g
3
(
18
x
−
x
2
−
77
)
>
5
∘
⇒
l
o
g
3
(
18
x
−
x
2
−
77
)
>
1
⇒
18
x
−
x
2
−
77
>
3
1
⇒
(
x
−
8
)
(
x
−
10
)
<
0
⇒
8
<
x
<
10
∴
x
∈
(
8
,
10
)