Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The domain of the function f (x)=( log2(x+3)/x2+3x+2) is
Q. The domain of the function
f
(
x
)
=
x
2
+
3
x
+
2
l
o
g
2
(
x
+
3
)
is
2222
209
KEAM
KEAM 2013
Relations and Functions
Report Error
A
R
−
{
−
1
,
−
2
}
11%
B
R
−
{
−
1
,
−
2
,
0
}
12%
C
(
−
3
,
−
1
)
∪
(
−
1
,
∞
)
28%
D
(
−
3
,
∞
)
−
{
−
1
,
−
2
}
43%
E
(
0
,
∞
)
43%
Solution:
Given function is
f
(
x
)
=
x
2
+
3
x
+
2
l
o
g
2
(
x
+
3
)
Here, for existence of log
x
+
3
>
0
⇒
x
>
−
3
⇒
x
∈
(
−
3
,
∞
)
and for existence of
f
(
x
)
,
x
2
+
3
x
+
2
=
0
⇒
(
x
+
1
)
(
x
+
2
)
=
0
⇒
x
=
−
1
,
−
2
Hence, required domain of
f
(
x
)
is
(
−
3
,
∞
)
−
{
−
1
,
−
2
}