Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The domain of the function f(x)=(1/√[x]2-[x]-2) is Here [x] denotes the greatest integer not exceeding the value of [x]
Q. The domain of the function
f
(
x
)
=
[
x
]
2
−
[
x
]
−
2
1
is
Here
[
x
]
denotes the greatest integer not exceeding the value of
[
x
]
1294
182
TS EAMCET 2019
Report Error
A
(
−
∞
,
−
2
)
∪
(
1
,
∞
)
B
(
−
∞
,
−
2
)
∪
(
0
,
∞
)
C
(
−
∞
,
−
2
)
∪
(
2
,
∞
)
D
(
−
∞
,
−
1
)
∪
(
3
,
∞
)
Solution:
We have,
f
(
x
)
=
[
x
]
2
−
[
x
]
−
2
1
f
(
x
)
is defined when
[
x
]
2
−
[
x
]
−
2
>
0
([
x
]
−
2
)
([
x
]
+
1
)
>
0
[
x
]
>
2
and
[
x
]
<
−
1
x
≥
3
and
x
<
−
1
∴
Domain of
f
(
x
)
is
x
∈
(
−
∞
,
−
1
)
∪
(
3
,
∞
)